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Global superdiffusion of weak chaos
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A class of kicked rotors is introduced, exhibiting accelerator-mode isléhlds and global superdiffusion
for arbitrarily weak chaos. The corresponding standard maps are shown to be exactly related to generalized
web maps taken modulo an “oblique cylinder.” Then, in a case that the web-map orbit structure is periodic in
the phase plane, the Als are essentiallymal web islands folded back into the cylinder. As a consequence,
chaotic orbits sticking around the Al boundary are acceleratdg when they traverse tiny dcceleration
spots” This leads to chaotic flights having a quasireguséeplikestructure. The global weak-chaos superdif-
fusion is thus basically different in nature from the strong-chaos one in the usual standard and web maps.
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The complexity and rich variety of dynamical behaviors lique cylinder.” A generalized web magp,, on a phase plane
of Hamiltonian systems with two degrees of freedom is wellw= (u,v) (column vectoy is defined by

exhibited by simple one-dimensional time-periodic models.

A realistic paradigm is the kicked rotor with Hamiltonian D, W= A [W,+F(w,)], 3
H=p2/2+V(x)=,__..8(t—n), wherep is angular momen-

tum, xis angle on a circlg=[ —,m), and the potentidV/(x) ~ \yhere A= (cosa, sina;—sina, cosa) is the matrix for a ro-
is usually chosen ag(x) = « cosx, « being a nonintegrabil-  ¢4tion by angler andF(w) is a vector function periodic imv.
ity parameter. The phase space is a cylinder and the values pf, integerK, the orbit structure ofb,, is periodic in the
(x, p) atinteger time$=n—0 are related by the “standard” phase plane. Then, the Als dj(sK,K) for K= —3 are essen-

map(1,2] tially normal (nonacceleratingislands of®,, folded back
into the cylinder. This fact makes these Als basically differ-
ent from usual Alg4] and has a significant impact on the
where f(x)=—dV/dx=x«sinx. For x>k~0.9716, this nature of the chaotic flights, as we show by studying in detail
map featureglobal chaos, i.e., a connected chaotic regionthe case ofK=—3 with g(x) =sinx. While elliptic orbits
unbounded in the direction and ranging fronx=— to deep inside an Al move bthsUg:a!Iy, chaotlc orbits sticking
x= [2]. The average kinetic energy of an ensemble in thid® the Al boundary perform ballistic motioonly when they
region grows diffusively,(pﬁ/Z}xn [1]. For « significantly ~ P@SS Ehrough very small' regions which we callcteleration
larger than k. (strong-chaos regime there emerge spots” The rest (the majority of the Al boundary behaves
accelerator-mo((:je islandls) [3—5] moving ballistically like that of a normal island, so that the chaotic orbits perform
(ppoecn). Then, chaotic orbits sticking around the boundarya_complete_l)boundednption on it. This gives rise tq chaotic
of an Al perform also ballistic motion. This leads to long flights having a quasiregulasteplike structure which be-

chaotic “flights” and tosuperdiffusionof the global chaos, comes increasingly pronounced @s:0.
(pﬁ/Z}ocn“g(1<M<2) [3,5].p g To establish the relation betweab{*¥’ and ®,,, con-

i i (K.x) i i
In this paper, we introduce a class of kicked rotors exhib-sr']der first a map¥ . Obtam?ﬁ from Eq(ll) by remov;‘rjg
iting Als and global superdiffusion foarbitrarily weak the modsS and by using(2) with s(x) replaced byx. This

chaos. These systems correspond to standard fapéth map, defined on the entire phase plana={x, p), can be
written as follows:

D prr1=pPntf(Xn), Xpr1=XptPpy1 modS, (1)

f(x)=Ks(x)+ xkg(x), 2

where —4<K< -2, k is a perturbation parametey(x) is 04

the sawtooth functiofs(x)=x for xeS and s(x+2)
=s(x)], andg(x) is a general smooth72-periodic function. 4
We denote these maps, ferd<K <0, by(IJ(SK"‘) . For k=0,

(I)éK'O) exhibits generically a pseudochaotic behavinero
Lyapunov exponeft[6]; important exceptions, with regular
elliptic motion, are the cases of integér= —3,—2,—1 [7].

For smallx, weak chaos emerges, see Fig. 1. The superdif-
fusion for —4<K<—2 is usually characterized by large -0.4
values ofu (for k=0, u~umax=2). TO get a better under-

standing of the nature of the Als and the chaotic flights re- F|G. 1. Global chaos for the standard mép with Eq. (2),
sponsible for the superdiffusion, we first show tHf) is  g(x)=sinx, and (@ K=-3, x=0.8; (b) K=—2.7247498,
exactly related to a “web map[8,9] taken modulo an “ob- «=0.15. The Als are the regions indicated by elliptic orbits.
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WKA): 7 =B-[z,+G(z,)], @)

where B is the matrix K+1,1,K,1) and G(z)=kg(x)
X(0,1). For —4<K<0, one can easily verify thaB
=Q 'AQ, whereA=(cosa, sina;—sina, cosa) with

2 cosa=K+2 (5)

and Q=(k,—k/2;0,1/2) withk= tan(«/2). Thus, the com-
position QoW xoQ ™1 is precisely a web mafB) with w
=(u,v)=Q-z and F(w)=Q-G(Q *-w). Explicitly, F(w)
=(x/2)g(v+u/k)(—k, 1). We denote by C=[—mm)

X (—,) the cylindrical phase space f@{"*) and define
W) as the map4) with x,,, (in first equation taken
modulo S. Clearly, if we restrict ourselves to initial condi-
tionszge ¢, W =@ ¥ The image ofC underQ is an
oblique cylinderC,, i.e., the strip bounded by the lines u/2n
=+ 7—u/k. We define the web map “modul@,” as

FIG. 2. Stochastic web of the web mdy, related by Eq(7) to
the standard map defined in the caption of Fig).1See text for

(’i)W:(I)W mod Ca: Wn+1:A'[Wn+F(Wn)]_m\Tv’ (6) details.

whereW=Q- (27,0)=(27k,0) andm s the unique integer
such thatw,,,e C,. The following exact relation then changed for sufficiently smak. The AFPs are surrounded
holds for all orbits with initial conditionszyeC (or wy by relatively large Als(see Fig. 1 and a strong superdiffu-
eC,): sion (large u) was always observed numerically for4
_ <K< —2. In what follows, we shall study in detail the case

D= =Q Lod,Q. (7)  of K=—23 with g(x) =sinx on the basis of relatiofi7). Fig-
ure 2 shows the stochastic web®§, (q=3) for k=0.8. The
“cylinder” C, is the oblique strip bounded by the parallel
that the orbit structure oK) is periodic with unit cel dashed lines. Together with these lines, the two horizontal

12=[—m,m)2 This implies a similar periodicity forb,, dashed segments define the _unit_d%ﬂl in which there ap-
= Qow(KXoQ~1 with unit cell T2=Q-T2. In fact, ®,, has pears, up to the transformatia@ in Eq. (7), the chaotic
(23 N ) w

crystalline symmetry(triangular, square, hexagonal foy ~ €9'01 I Fig. 5(a). Thejthngmt cell inC,, 1= %
=3, 4, 6, respectively[8,9]. One can then expect the exis- CONtAINS one “hexagonal” island jHand two “triangular
tence of an extended chaotic orbit having this symmetry anéflands, L and R. The hyperboliox) pointsa, b, d, ande
forming a “stochastic web.” This web, which has been ob- i€ on the boundaries af, while c andf are insideC, . The
served for particular mapb,, [8,9], encircles the torug2 in ~ POINtsa, b, ¢ are equivalent, moduld’, , to d, e, f, respec-
two independent directions. This implies global chaos for thdively. It is interesting to see first how the AFPs emerge
map (6) in C,, and, due to Eq(7), also for(I)gKvK) in C. a%cordlng t(_)(?). The islands H, L;, R; are |nvar!ant un%er
For nonintegerk, the mapsW( <) and ®,, exhibit no (I)W_ and their centers CH (_ZL]- , CR; are fixed points ofb;,
periodicity and there is no simple relation between the orbitVhich are rotated clockwise by=2m/3 under®, . Then,
structures of®{*) and ®,,. In the k=0 case, theoretical denoting®,, by — and moduloC, by =, it is clear from
arguments and numerical evider{€ strongly indicate that Fig- 2 that CL y—CLy—CLy=CL,—~CL;=CL,. In gen-
for irrational q the torusT? can be partitioned into two re- eral, we see that,(CH;)=CH;, ®,(CL;)=CL;,,, and
gions having nonzero areé) A connected pseudochaotic @W(CRj)=CRj_1, so that Cl. and CR correspond to the
region (zero Lyapunov exponent(b) An apparently dense AFPs and L and R correspond to the Als.
set of elliptic islands whose boundaries do not cross or touch Extensive numerical observations indicate that for small
the discontinuity linex=— . Because of the last fact, the a chaotic orbit is always a random sequence of three types of
pseudochaotic region encircl&$ in both thex andp direc-  motion: (a) A “H motion,” bounded inp, sticking around the
tions, implying global pseudochaos dh This will generally  poundary of H. (b) A “flight” in the positive or (c) negative
turn into global weak chaos when a small perturbak@ix)  p direction, accompanied by stickiness to the boundary;of L
is applied. Figure (b) shows an example for=m(\5 or R, respectively. Remarkably, a flight was always found
—1)/2 (K=—2.7247) andk=0.15. to be a quasiregulazequence of stepa&n example of such a
Accelerator-mode fixed pointeAFP9 of map (1) satisfy  flight, interrupted g a H motion, is shown in Fig. 3 for
pP1—Po=2m] andx;=Xy=X;—p1+ 2]’ for integersj#0 «k=0.3. Very long, uninterrupted flight®f at least 10 itera-
andj’. One can choospy=0 and, for(l)&'('o) (k=0), we get  tions) were usually observed fok<0.3. The steps in the
Xo=2m]jlK. Sincexye (—, ), one must havg==*1 and flights clearly leave their fingerprints in the strong superdif-
—4<K<-2. The latter results remain essentially un-fusion of (p2/2), at least for smalh (see inset in Fig. B

For integerK=—3,—2,—1 [corresponding, by relation
(5), to g=2n/a=3, 4, 6, respectively it is easy to show
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FIG. 3. Chaaotic flight, interruptedyba H motion, forK= -3,
x=0.3, andg(x)=sinx. The inset shows IE,)) vs In(n) (dotted
line), whereE,=p?2/2, the averagé ) is over an ensemble of 10
initial conditions well localized aroundxE&0, p=— ), andnpay
=12 000; the linear fifsolid line) has slopeu~1.96.

This steplike structure will now be explained using relation
(7). The notationa(L;) (and similar notation for other x
points and islangswill indicate a web(chaotig point stick-
ing to the L; boundary very close ta andinsideC, ; if this
point is outsideC,, it will be denoted bya(L;). For small
x>0, @, is almost a clockwise rotation byg=27/3 while
the motion of web points undeb? is a slow drift in the
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FIG. 4. Magnification of one step in the chaotic flight shown in
Fig. 3. The horizontal part of the stégdot9 consists ofefd cycles
followed by cab cycles (total of 198 points The vertical part
(squares consists of six acceleration cycléae (18 pointg. The
inset shows the acceleration sgafLg)} in unit cell j =0 using the
variablesx’ = (x+ )X 10° andp’ = (p+ ) X 10°.

a(Ly). The horizontak fd cycles of the next step then start.
This completes the analysis of one step.

Figure 4 shows a strong trapping near six islands in the
AS. In fact, by considering a large number of steps in very
long orbits, we found that assumes only two values for

directions of the stable and unstable manifolds, indicated bx=0.3: r=6 with probability P~0.95 andr=7 with P
arrows in Fig. 2. Since the drift velocity vanishes near x~0.05. The value of ranges betweeh=53 andl =82. This

points, a cycle such as(L_,)—f(Lg)—d(Lg) can repeat
many times. This cycle will then drift to the cycle
c(L_q)—a(Lg)—b(L{) which can also repeat many times.
The cyclesfd andcab give the “horizontal” part of a step,
wherep is bounded around its values at the x poifsse Fig.
4). This part containg cycles (=66 in Fig. 4, wherel is
the largest integer such that all pointB,[e(L_,)], i
=0,...,3—1, lieinsideC,, so that no modul@, has to

be taken in the cycles. The “vertical” part of a step is due to

the following process. The lastab cycle is followed by the
cycle c(L_;)—a(Lo)—b(Ly), whereb(L}) is outsideC, .
Taking then the moduld,, b(Ly)=e(L,), we see that
a(Lo) is mapped intoe(L;) by ®,. Next, ®,[e(L,)]
=f(L,). Thus, sincec is equivalent tof, the cyclecae is
actually an “acceleration” cyclefae with ®[f(L_;)]
=f(Ly). The set{a(Ly)} of all points a(Ly) which are
mapped into pointstT(L(’,) by ®,, is the acceleration spot
(AS) in unit cell j=0. As shown by the inset in Fig. 4, the
AS touches the linek=— = (x'=0), corresponding to the

lower boundary ofC,. The cyclefae will repeatr times
(r==6 in Fig. 4, wherer is the largest integer such that all

points @,[f(Ls_;)] mod T2, i=0,...r—1, lie in the

range should be associated with the continuation of the trap-
ping, outside the AS, near the island chain to which the six
AS islands belong. A% decreases, the steplike structure of
the flights becomes more pronounced and the high regularity
of the vertical parts of the steps, i.e., the values,afontin-

ues to be observed. F&=0.2,1=88-136 andr=11 (P
~0.99) orr=12 (P~0.01). Forx=0.1,1=150-259 and
r=29 (P~0.93) orr=30 (P~0.07).

In conclusion, our study of thk = — 3 case indicates that
the global superdiffusion of weak chaos is basically different
in nature from the superdiffusion observed in the usual stan-
dard and web mapi3,5]. In the latter systems, the Als are
“tangle” islands[4]. These islands born in a strong-chaos
regime and are fundamentally different from normal islands,
e.g., resonance or web islands, which continue to exist in an
integrable limit. Since a tangle island lies inside the lobe of a
turnstile[4], it causes the acceleration of chaotic orbits stick-
ing all around its boundary. On the other hand, relatitf
implies that the Als folK=—3 are essentially normal web
islands folded back into the cylinder. As a consequence, one
can have a situation that a chaotic orbit sticking to the Al
boundary is acceleratednly at tiny acceleration spots, in
sharp contrast with the case of tangle islands. The resulting

AS. After r fae cycles, one leaves the AS by crossing thesteplike structure of the chaotic flights is gradually assumed

line x=—= and arrives toa(Ly) which is equivalent to
d(Lg)- Thus,ﬁ)w[f(Lm,l)] is equivalent tod(Lg), not to

also by elliptic flights with initial conditions approaching the
Al boundary from inside the Al. The basic origin of both the
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Als and the acceleration spots is the folding-back mechasuitable model for quantum computation of complex dynam-
nism. Quantum manifestations of the superdiffusion in thecs. The exponential-decay rate of the concurreimeasure
usual standard map are well knowh0,11] and have been of quantum entanglemenivas shown to be proportional to
observed in experimental realizations of the quantum kickeghe classical diffusion coefficiefil5]. The extension of this
rotor[12]. The perturbed sawtooth map) with Eq. (2) cor-  study to the perturbed sawtooth map, with its new kind of

responds to a kicked rotor with a nonsmooth potential. The:haotic-transport properties, thus appears to be a natural and
quantum version of such a system is experimentally realiziteresting future task.

able by, e.g., an optical analogi&3]. It should be then

interesting to study the fingerprints of the new kind of super- This work was partially supported by the Israel Science
diffusion in the corresponding quantum systems. Quite reFoundation administered by the Israel Academy of Sciences
cently[14,15, the quantum sawtooth map was found to be aand Humanities.
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