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Global superdiffusion of weak chaos
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A class of kicked rotors is introduced, exhibiting accelerator-mode islands~AIs! andglobal superdiffusion
for arbitrarily weak chaos. The corresponding standard maps are shown to be exactly related to generalized
web maps taken modulo an ‘‘oblique cylinder.’’ Then, in a case that the web-map orbit structure is periodic in
the phase plane, the AIs are essentiallynormal web islands folded back into the cylinder. As a consequence,
chaotic orbits sticking around the AI boundary are acceleratedonly when they traverse tiny ‘‘acceleration
spots.’’ This leads to chaotic flights having a quasiregularsteplikestructure. The global weak-chaos superdif-
fusion is thus basically different in nature from the strong-chaos one in the usual standard and web maps.
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The complexity and rich variety of dynamical behavio
of Hamiltonian systems with two degrees of freedom is w
exhibited by simple one-dimensional time-periodic mode
A realistic paradigm is the kicked rotor with Hamiltonia
H5p2/21V(x)(n52`

` d(t2n), wherep is angular momen-
tum,x is angle on a circleS5@2p,p!, and the potentialV(x)
is usually chosen asV(x)5k cosx, k being a nonintegrabil-
ity parameter. The phase space is a cylinder and the valu
(x, p) at integer timest5n20 are related by the ‘‘standard
map @1,2#

Fs: pn115pn1 f ~xn!, xn115xn1pn11 mod S, ~1!

where f (x)52dV/dx5k sinx. For k.kc'0.9716, this
map featuresglobal chaos, i.e., a connected chaotic regi
unbounded in thep direction and ranging fromx52p to
x5p @2#. The average kinetic energy of an ensemble in t
region grows diffusively,̂ pn

2/2&}n @1#. For k significantly
larger than kc ~strong-chaos regime!, there emerge
accelerator-mode islands~AIs! @3–5# moving ballistically
(pn}n). Then, chaotic orbits sticking around the bounda
of an AI perform also ballistic motion. This leads to lon
chaotic ‘‘flights’’ and tosuperdiffusionof the global chaos,
^pn

2/2&}nm ~1,m,2! @3,5#.
In this paper, we introduce a class of kicked rotors exh

iting AIs and global superdiffusion forarbitrarily weak
chaos. These systems correspond to standard maps~1! with

f ~x!5Ks~x!1kg~x!, ~2!

where24,K,22, k is a perturbation parameter,s(x) is
the sawtooth function@s(x)5x for xPS and s(x12p)
5s(x)], andg(x) is a general smooth 2p-periodic function.
We denote these maps, for24,K,0, by Fs

(K,k) . Fork50,
Fs

(K,0) exhibits generically a pseudochaotic behavior~zero
Lyapunov exponent! @6#; important exceptions, with regula
elliptic motion, are the cases of integerK523,22,21 @7#.
For smallk, weak chaos emerges, see Fig. 1. The super
fusion for 24,K,22 is usually characterized by larg
values ofm ~for k50, m'mmax52). To get a better under
standing of the nature of the AIs and the chaotic flights
sponsible for the superdiffusion, we first show thatFs

(K,k) is
exactly related to a ‘‘web map’’@8,9# taken modulo an ‘‘ob-
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lique cylinder.’’ A generalized web mapFw on a phase plane
w[(u,v) ~column vector! is defined by

Fw : wn115A•@wn1F~wn!#, ~3!

whereA5(cosa, sina;2sina, cosa) is the matrix for a ro-
tation by anglea andF~w! is a vector function periodic inw.
For integerK, the orbit structure ofFw is periodic in the
phase plane. Then, the AIs ofFs

(K,k) for K523 are essen-
tially normal ~nonaccelerating! islands ofFw folded back
into the cylinder. This fact makes these AIs basically diffe
ent from usual AIs@4# and has a significant impact on th
nature of the chaotic flights, as we show by studying in de
the case ofK523 with g(x)5sinx. While elliptic orbits
deep inside an AI move ballistically, chaotic orbits stickin
to the AI boundary perform ballistic motiononly when they
pass through very small regions which we call ‘‘acceleration
spots.’’ The rest ~the majority! of the AI boundary behaves
like that of a normal island, so that the chaotic orbits perfo
a completelyboundedmotion on it. This gives rise to chaoti
flights having a quasiregularsteplike structure which be-
comes increasingly pronounced ask→0.

To establish the relation betweenFs
(K,k) and Fw , con-

sider first a mapC(K,k) obtained from Eq.~1! by removing
the modS and by using~2! with s(x) replaced byx. This
map, defined on the entire phase plane ofz[(x, p), can be
written as follows:

FIG. 1. Global chaos for the standard map~1! with Eq. ~2!,
g(x)5sinx, and ~a! K523, k50.8; ~b! K522.724 749 8,
k50.15. The AIs are the regions indicated by elliptic orbits.
©2004 The American Physical Society12-1
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C(K,k): zn115B•@zn1G~zn!#, ~4!

where B is the matrix (K11,1;K,1) and G(z)5kg(x)
3(0,1). For 24,K,0, one can easily verify thatB
5Q21AQ, whereA5(cosa, sina;2sina, cosa) with

2 cosa5K12 ~5!

and Q5(k,2k/2;0,1/2) with k[ tan(a/2). Thus, the com-
position Q+C(K,k)+Q21 is precisely a web map~3! with w
5(u,v)5Q•z and F(w)5Q•G(Q21

•w). Explicitly, F(w)
5(k/2)g(v1u/k)(2k, 1). We denote by C5@2p,p!
3~2`,`! the cylindrical phase space forFs

(K,k) and define
CC

(K,k) as the map~4! with xn11 ~in first equation! taken
modulo S. Clearly, if we restrict ourselves to initial cond
tions z0PC, CC

(K,k)5Fs
(K,k) . The image ofC underQ is an

oblique cylinderCa , i.e., the strip bounded by the linesv
56p2u/k. We define the web map ‘‘moduloCa’’ as

F̃w5Fw mod Ca : wn115A•@wn1F~wn!#2mw̃, ~6!

wherew̃5Q•(2p,0)5(2pk,0) andm is the unique integer
such thatwn11P Ca . The following exact relation then
holds for all orbits with initial conditionsz0PC ~or w0
PCa):

Fs
(K,k)5CC

(K,k)5Q21+F̃w+Q. ~7!

For integerK523,22,21 @corresponding, by relation
~5!, to q[2p/a53, 4, 6, respectively#, it is easy to show
that the orbit structure ofC(K,k) is periodic with unit cell
T25@2p,p)2. This implies a similar periodicity forFw

5Q+C(K,k)+Q21 with unit cell Ta
25Q•T2. In fact, Fw has

crystalline symmetry~triangular, square, hexagonal forq
53, 4, 6, respectively! @8,9#. One can then expect the exi
tence of an extended chaotic orbit having this symmetry
forming a ‘‘stochastic web.’’ This web, which has been o
served for particular mapsFw @8,9#, encircles the torusTa

2 in
two independent directions. This implies global chaos for
map ~6! in Ca and, due to Eq.~7!, also forFs

(K,k) in C.
For nonintegerK, the mapsC(K,k) and Fw exhibit no

periodicity and there is no simple relation between the o
structures ofFs

(K,k) and Fw . In the k50 case, theoretica
arguments and numerical evidence@6# strongly indicate that
for irrational q the torusT2 can be partitioned into two re
gions having nonzero area:~a! A connected pseudochaot
region ~zero Lyapunov exponent!. ~b! An apparently dense
set of elliptic islands whose boundaries do not cross or to
the discontinuity linex52p. Because of the last fact, th
pseudochaotic region encirclesT2 in both thex andp direc-
tions, implying global pseudochaos inC. This will generally
turn into global weak chaos when a small perturbationkg(x)
is applied. Figure 1~b! shows an example fora5p(A5
21)/2 (K'22.7247) andk50.15.

Accelerator-mode fixed points~AFPs! of map ~1! satisfy
p12p052p j andx15x05x12p112p j 8 for integersj Þ0
and j 8. One can choosep050 and, forFs

(K,0) ~k50!, we get
x052p j /K. Sincex0P(2p,p), one must havej 561 and
24,K,22. The latter results remain essentially u
01621
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changed for sufficiently smallk. The AFPs are surrounde
by relatively large AIs~see Fig. 1! and a strong superdiffu
sion ~large m! was always observed numerically for24
,K,22. In what follows, we shall study in detail the cas
of K523 with g(x)5sinx on the basis of relation~7!. Fig-
ure 2 shows the stochastic web ofFw (q53) for k50.8. The
‘‘cylinder’’ Ca is the oblique strip bounded by the parall
dashed lines. Together with these lines, the two horizo
dashed segments define the unit cellTa

2 in which there ap-
pears, up to the transformationQ in Eq. ~7!, the chaotic
region in Fig. 1~a!. The j th unit cell in Ca , j 52`, . . . ,`,
contains one ‘‘hexagonal’’ island Hj and two ‘‘triangular’’
islands, Lj and Rj . The hyperbolic~x! pointsa, b, d, ande
lie on the boundaries ofCa while c and f are insideCa . The
pointsa, b, c are equivalent, moduloTa

2 , to d, e, f, respec-
tively. It is interesting to see first how the AFPs emer
according to~7!. The islands Hj , L j , Rj are invariant under
Fw

3 and their centers CHj , CLj , CRj are fixed points ofFw
3

which are rotated clockwise bya52p/3 underFw . Then,
denotingFw by ° and moduloCa by ⇒, it is clear from
Fig. 2 that CL21°CL0°CL08⇒CL1°CL18⇒CL2. In gen-

eral, we see thatF̃w(CHj )5CHj , F̃w(CLj )5CLj 11, and
F̃w(CRj )5CRj 21, so that CLj and CRj correspond to the
AFPs and Lj and Rj correspond to the AIs.

Extensive numerical observations indicate that for smak
a chaotic orbit is always a random sequence of three type
motion: ~a! A ‘‘H motion,’’ bounded inp, sticking around the
boundary of Hj . ~b! A ‘‘flight’’ in the positive or ~c! negative
p direction, accompanied by stickiness to the boundary oj
or Rj , respectively. Remarkably, a flight was always fou
to be a quasiregularsequence of steps. An example of such a
flight, interrupted by a H motion, is shown in Fig. 3 for
k50.3. Very long, uninterrupted flights~of at least 106 itera-
tions! were usually observed fork<0.3. The steps in the
flights clearly leave their fingerprints in the strong superd
fusion of ^pn

2/2&, at least for smalln ~see inset in Fig. 3!.

FIG. 2. Stochastic web of the web mapFw related by Eq.~7! to
the standard map defined in the caption of Fig. 1~a!. See text for
details.
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GLOBAL SUPERDIFFUSION OF WEAK CHAOS PHYSICAL REVIEW E69, 016212 ~2004!
This steplike structure will now be explained using relati
~7!. The notationa(L j ) ~and similar notation for other x
points and islands! will indicate a web~chaotic! point stick-
ing to the Lj boundary very close toa and insideCa ; if this
point is outsideCa , it will be denoted byā(L j ). For small
k.0, Fw is almost a clockwise rotation bya52p/3 while
the motion of web points underFw

3 is a slow drift in the
directions of the stable and unstable manifolds, indicated
arrows in Fig. 2. Since the drift velocity vanishes near
points, a cycle such ase(L21)° f (L0)°d(L08) can repeat
many times. This cycle will then drift to the cycl
c(L21)°a(L0)°b(L08) which can also repeat many time
The cyclese f d andcab give the ‘‘horizontal’’ part of a step,
wherep is bounded around its values at the x points~see Fig.
4!. This part containsl cycles (l 566 in Fig. 4!, where l is
the largest integer such that all pointsFw

i @e(L21)#, i
50, . . . ,3l 21, lie insideCa , so that no moduloCa has to
be taken in the cycles. The ‘‘vertical’’ part of a step is due
the following process. The lastcab cycle is followed by the
cycle c(L21)°a(L0)°b̄(L08), whereb̄(L08) is outsideCa .

Taking then the moduloCa , b̄(L08)⇒e(L1), we see that

a(L0) is mapped intoe(L1) by F̃w . Next, F̃w@e(L1)#
5 f (L2). Thus, sincec is equivalent tof, the cyclecae is
actually an ‘‘acceleration’’ cyclef ae with F̃w

3 @ f (L21)#
5 f (L2). The set $a(L0)% of all points a(L0) which are
mapped into pointsb̄(L08) by Fw is the acceleration spot
~AS! in unit cell j 50. As shown by the inset in Fig. 4, th
AS touches the linex52p (x850), corresponding to the
lower boundary ofCa . The cycle f ae will repeat r times
(r 56 in Fig. 4!, wherer is the largest integer such that a
points F̃w@ f (L3i 21)# mod Ta

2 , i 50, . . . ,r 21, lie in the
AS. After r f ae cycles, one leaves the AS by crossing t
line x52p and arrives toā(L0) which is equivalent to
d(L08). Thus, F̃w@ f (L3r 21)# is equivalent tod(L08), not to

FIG. 3. Chaotic flight, interrupted by a H motion, for K523,
k50.3, andg(x)5sinx. The inset shows ln(^En&) vs ln(n) ~dotted
line!, whereEn5pn

2/2, the averagê & is over an ensemble of 106

initial conditions well localized around (x50, p52p), andnmax

512 000; the linear fit~solid line! has slopem'1.96.
01621
y

a(L0). The horizontale f d cycles of the next step then star
This completes the analysis of one step.

Figure 4 shows a strong trapping near six islands in
AS. In fact, by considering a large number of steps in ve
long orbits, we found thatr assumes only two values fo
k50.3: r 56 with probability P'0.95 and r 57 with P
'0.05. The value ofl ranges betweenl 553 andl 582. This
range should be associated with the continuation of the t
ping, outside the AS, near the island chain to which the
AS islands belong. Ask decreases, the steplike structure
the flights becomes more pronounced and the high regula
of the vertical parts of the steps, i.e., the values ofr, contin-
ues to be observed. Fork50.2, l 5882136 andr 511 (P
'0.99) or r 512 (P'0.01). Fork50.1, l 51502259 and
r 529 (P'0.93) orr 530 (P'0.07).

In conclusion, our study of theK523 case indicates tha
the global superdiffusion of weak chaos is basically differe
in nature from the superdiffusion observed in the usual st
dard and web maps@3,5#. In the latter systems, the AIs ar
‘‘tangle’’ islands @4#. These islands born in a strong-cha
regime and are fundamentally different from normal islan
e.g., resonance or web islands, which continue to exist in
integrable limit. Since a tangle island lies inside the lobe o
turnstile@4#, it causes the acceleration of chaotic orbits stic
ing all around its boundary. On the other hand, relation~7!
implies that the AIs forK523 are essentially normal we
islands folded back into the cylinder. As a consequence,
can have a situation that a chaotic orbit sticking to the
boundary is acceleratedonly at tiny acceleration spots, in
sharp contrast with the case of tangle islands. The resul
steplike structure of the chaotic flights is gradually assum
also by elliptic flights with initial conditions approaching th
AI boundary from inside the AI. The basic origin of both th

FIG. 4. Magnification of one step in the chaotic flight shown
Fig. 3. The horizontal part of the step~dots! consists ofe f d cycles
followed by cab cycles ~total of 198 points!. The vertical part
~squares! consists of six acceleration cyclesf ae ~18 points!. The
inset shows the acceleration spot$a(L0)% in unit cell j 50 using the
variablesx85(x1p)3105 andp85(p1p)3105.
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AIs and the acceleration spots is the folding-back mec
nism. Quantum manifestations of the superdiffusion in
usual standard map are well known@10,11# and have been
observed in experimental realizations of the quantum kic
rotor @12#. The perturbed sawtooth map~1! with Eq. ~2! cor-
responds to a kicked rotor with a nonsmooth potential. T
quantum version of such a system is experimentally rea
able by, e.g., an optical analogue@13#. It should be then
interesting to study the fingerprints of the new kind of sup
diffusion in the corresponding quantum systems. Quite
cently @14,15#, the quantum sawtooth map was found to b
r.

ni-
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suitable model for quantum computation of complex dyna
ics. The exponential-decay rate of the concurrence~measure
of quantum entanglement! was shown to be proportional t
the classical diffusion coefficient@15#. The extension of this
study to the perturbed sawtooth map, with its new kind
chaotic-transport properties, thus appears to be a natura
interesting future task.

This work was partially supported by the Israel Scien
Foundation administered by the Israel Academy of Scien
and Humanities.
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